4.7 Article

Green synthesis of α-Fe2O3 nanoparticles for arsenic(V) remediation with a novel aspect for sludge management

Journal

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
Volume 4, Issue 1, Pages 639-650

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jece.2015.12.010

Keywords

Aloe vera; Iron oxide nanoparticle; Arsenic removal; Response surface methodology; Sludge management

Funding

  1. Council of Scientific and Industrial Research (CSIR), Government of India

Ask authors/readers for more resources

A simple, single step and eco-friendly approach was taken for synthesizing iron oxide nanoparticles using Aloe vera leaf extract. The nanoparticles were characterized by various techniques and used for arsenic(V) remediation in synthetic system with an initial concentration range of 2-30 mg/L. The effect of pH, particle dosage and initial arsenic concentration on arsenic adsorption was investigated using response surface methodology involving five levels Central Composite Design (CCD) considering adsorption capacity as the response. The nanoparticles showed a high sorption capacity of 38.48 mg/g in the experimental range of concentration compared to other inorganic oxide based adsorbents. A novel approach was adopted for utilization of arsenic contained sludge. As(V) sorbed nanoparticles were used in the preparation of colored soda lime silicate glass. The basic properties such as density, thermal and optical properties were measured for the experimental glass sample and compared with samples containing commercial Fe2O3. The overall study indicates that the green synthesized iron oxide nanoparticle is a prospective candidate for arsenic remediation in contaminated water. The arsenic contained sludge may be used in preparation of coloured glasses which have wide application in making container bottles and building glasses. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available