4.4 Article

Therapeutic Potential of the Rhizomes of Anemarrhena asphodeloides and Timosaponin A-III in an Animal Model of Lipopolysaccharide-Induced Lung Inflammation

Journal

BIOMOLECULES & THERAPEUTICS
Volume 26, Issue 6, Pages 553-559

Publisher

KOREAN SOC APPLIED PHARMACOLOGY
DOI: 10.4062/biomolther.2017.249

Keywords

Anemarrhena asphodeloides; Timosaponin A-III; Lung inflammation; Cytokine

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [NRF-2016R1A2B4007756]
  2. Kangwon National University [520170392]
  3. BK21 PLUS program from the Ministry of Education, Republic of Korea

Ask authors/readers for more resources

Investigations into the development of new therapeutic agents for lung inflammatory disorders have led to the discovery of plant-based alternatives. The rhizomes of Anemarrhena asphodeloides have a long history of use against lung inflammatory disorders in traditional herbal medicine. However, the therapeutic potential of this plant material in animal models of lung inflammation has yet to be evaluated. In the present study, we prepared the alcoholic extract and derived the saponin-enriched fraction from the rhizomes of A. asphodeloides and isolated timosaponin A-III, a major constituent. Lung inflammation was induced by intranasal administration of lipopolysaccharide (LPS) to mice, representing an animal model of acute lung injury (ALI). The alcoholic extract (50-200 mg/kg) inhibited the development of ALI. Especially, the oral administration of the saponin-enriched fraction (10-50 mg/kg) potently inhibited the lung inflammatory index. It reduced the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Histological changes in alveolar wall thickness and the number of infiltrated cells of the lung tissue also indicated that the saponin-enriched fraction strongly inhibited lung inflammation. Most importantly, the oral administration of timosaponin A-III at 25-50 mg/kg significantly inhibited the inflammatory markers observed in LPS-induced ALI mice. All these findings, for the first time, provide evidence supporting the effectiveness of A. asphodeloides and its major constituent, timosaponin A-III, in alleviating lung inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available