4.7 Article

AN HST/COS SURVEY OF THE LOW-REDSHIFT INTERGALACTIC MEDIUM. I. SURVEY, METHODOLOGY, AND OVERALL RESULTS

Journal

ASTROPHYSICAL JOURNAL
Volume 817, Issue 2, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/0004-637X/817/2/111

Keywords

cosmological parameters; cosmology: observations; intergalactic medium; quasars: absorption lines; surveys

Funding

  1. NASA [NNX08AC14G, HST-AR-1243.06, HST-GO-12612.01-A, HST-GO-13008.01-A]
  2. NSF [AST1109117, AST07-07474]
  3. Institute for Astronomy at Cambridge University

Ask authors/readers for more resources

We use high-quality, medium-resolution Hubble Space Telescope/Cosmic Origins Spectrograph (HST/COS) observations of 82 UV-bright active galactic nuclei (AGNs) at redshifts z(AGN) < 0.85 to construct the largest survey of the low-redshift intergalactic medium (IGM) to date: 5138 individual extragalactic absorption lines in H I and 25 different metal-ion species grouped into 2611 distinct redshift systems at z(abs) < 0.75 covering total redshift pathlengths Delta z(HI) = 21.7 and Delta z(O VI) = 14.5. Our semi-automated line-finding and measurement technique renders the catalog as objectively defined as possible. The cumulative column density distribution of H I systems can be parametrized dN (> N)/dz = C-14 (N/10(14) cm(-2))(-(beta-1)), with C-14 = 25 +/- 1 and beta = 1.65 +/- 0.02. This distribution is seen to evolve both in amplitude, C-14 infinity (1+z)(2.3 +/- 0.1), and slope beta(z) = 1.75-0.31 z for z <= 0.47. We observe metal lines in 418 systems, and find that the fraction of IGM absorbers detected in metals is strongly dependent on N-H I. The distribution of O VI absorbers appears to evolve in the same sense as the Ly alpha forest. We calculate contributions to Omega(b) from different components of the low-z IGM and determine the Ly alpha decrement as a function of redshift. IGM absorbers are analyzed via a two-point correlation function in velocity space. We find substantial clustering of H I absorbers on scales of Delta v = 50-300 km s(-1) with no significant clustering at Delta(v) greater than or similar to 1000 km s(-1). Splitting the sample into strong and weak absorbers, we see that most of the clustering occurs in strong, N-H I greater than or similar to 10(13.5) cm(-2), metal-bearing IGM systems. The full catalog of absorption lines and fully reduced spectra is available via the Mikulski Archive for Space Telescopes (MAST) as a high-level science product at http://archive.stsci.edu/prepds/igm/.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available