4.7 Article

Marine natural products for multi-targeted cancer treatment: A future insight

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 105, Issue -, Pages 233-245

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2018.05.142

Keywords

Antioxidants; Anti-inflammatory agents; Antibiotics; Antimitotics; Anticancer; Multitargeted approach; Marine sponges

Funding

  1. Department of Biotechnology, Government of India [BT/PR12182/AAQ/3/696/2014]
  2. SVKM'S NMIMS

Ask authors/readers for more resources

Cancer is world's second largest alarming disease, which involves abnormal cell growth and have potential to spread to other parts of the body. Most of the available anticancer drugs are designed to act on specific targets by altering the activity of involved transporters and genes. As cancer cells exhibit complex cellular machinery, the regeneration of cancer tissues and chemo resistance towards the therapy has been the main obstacle in cancer treatment. This fact encourages the researchers to explore the multitargeted use of existing medicines to overcome the shortcomings of chemotherapy for alternative and safer treatment strategies. Recent developments in genomics-proteomics and an understanding of the molecular pharmacology of cancer have also challenged researchers to come up with target-based drugs. The literature supports the evidence of natural compounds exhibiting antioxidant, antimitotic, anti-inflammatory, antibiotic as well as anticancer activity. In this review, we have selected marine sponges as a prolific source of bioactive compounds which can be explored for their possible use in cancer and have tried to link their role in cancer pathway. To prove this, we revisited the literature for the selection of cancer genes for the multitargeted use of existing drugs and natural products. We used Cytoscape network analysis and Search tool for retrieval of interacting genes/ proteins (STRING) to study the possible interactions to show the links between the antioxidants, antibiotics, anti-inflammatory and antimitotic agents and their targets for their possible use in cancer. We included total 78 pathways, their genes and natural compounds from the above four pharmacological classes used in cancer treatment for multitargeted approach. Based on the Cytoscape network analysis results, we shortlist 22 genes based on their average shortest path length connecting one node to all other nodes in a network. These selected genes are CDKN2A, FH, VHL, STK11, SUFU, RB1, MEN1, HRPT2, EXT1, 2, CDK4, p14, p16, TSC1, 2, AXIN2, SDBH C, D, NF1, 2, BHD, PTCH, GPC3, CYLD and WT1. The selected genes were analysed using STRING for their protein-protein interactions. Based on the above findings, we propose the selected genes to be considered as major targets and are suggested to be studied for discovering marine natural products as drug lead in cancer treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available