4.6 Article

Low-thermal-conductivity nitrogen-doped graphene aerogels for thermal insulation

Journal

RSC ADVANCES
Volume 6, Issue 12, Pages 9396-9401

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra23236h

Keywords

-

Funding

  1. National Natural Science Foundation of China [51172279, 51302317]
  2. Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
  3. Aid Program for Innovative Group of National University of Defense Technology

Ask authors/readers for more resources

Aerogels such as SiO2 aerogels, Al2O3 aerogels and carbon aerogels have been widely used in thermal insulation. However, graphene aerogels (or reduced graphene oxide aerogels), which have similar structures, have never been used in this field. In this paper, the concept of suppressing the thermal conductivities of graphene aerogels by introducing defects or doping atoms in graphene was introduced. Nitrogen-doped (N-doped) graphene aerogels with low thermal conductivity were prepared with paraphenylene diamine as a bridging and doping agent by CO2 supercritical drying. With the introduction of doping atoms and the bridging agent, the solid thermal conductivity is depressed. Also, with CO2 supercritical drying, the pore size is reduced, and the gaseous thermal conductivity is suppressed. The lowest thermal conductivity of N-doped graphene aerogels is 0.023 W (m(-1) K-1), which is nearly 1/2 of the lowest reported value and even lower than that of static air. Meanwhile, the thermal insulation mechanisms were also studied. The low thermal conductivity and low bulk density make N-doped graphene aerogels a potentially useful thermal insulation material that may significantly lighten thermal insulation systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available