4.6 Article

Classification of heart sound signal using curve fitting and fractal dimension

Journal

BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Volume 39, Issue -, Pages 351-359

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.bspc.2017.08.002

Keywords

Heart sound signal; Fractal dimension; MFCC; Curve fitting; Feature extraction; Automatic classification

Ask authors/readers for more resources

Cardiovascular disease is one of the major causes of mortality worldwide. Audio signal produced by the mechanical activity of heart provides useful information about the heart valves operation. To increase discriminability between heart sound signals of different normal and abnormal persons, extraction of appropriate features is so important. An accurate segmentation of heart sound signal requires its corresponding ECG(1) signal. But, acquiring of ECG is generally expensive and time consuming. So, one of the main goals of this paper is to eliminate the segmentation step. In this paper, two feature extraction methods are proposed. In the first proposed method, curve fitting is used to achieve the information contained in the sequence of heart sound signal. In the second method, the powerful features extracted by MFCC2 are fused with the fractal features by stacking. The experiments are done on six popular datasets to assess the efficiency of different methods One of the data sets contains four classes and the rest of them include two classes (normal and pathologic). In the classification step, the nearest neighbor classifier with Euclidean distance is used. The proposed method has good performance compared to previous methods such as Filter banks and Wavelet transform. Particularly, the performance of the second method is significantly better than the first proposed method. For three data sets, the overall accuracy of 92%, 81% and 98% are achieved, respectively. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available