4.8 Article

Development and MPI tracking of novel hypoxia-targeted theranostic exosomes

Journal

BIOMATERIALS
Volume 177, Issue -, Pages 139-148

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2018.05.048

Keywords

Cancer; Hypoxia; Exosomes; Drug delivery; Magnetic particle imaging (MPI)

Funding

  1. National Institutes of Health (NIH) in United States [1171528-100-PADRL]
  2. NATIONAL CANCER INSTITUTE [R01CA186275] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Treating the hypoxic region of the tumor remains a significant challenge. The goals of this study are to develop an exosome platform that can target regions of tumor hypoxia and that can be monitored in vivo using magnetic particle imaging (MPI). Four types of exosomes (generated under hypoxic or normoxic conditions, and with or without exposure to X-ray radiation) were isolated from MDA-MB-231 human breast cancer cells. Exosomes were labeled by DiO, a fluorescent lipophilic tracer, to quantify their uptake by hypoxic cancer cells. Subsequently, the exosomes were modified to carry SPIO (superparamagnetic iron oxide) nanoparticles and Olaparib (PARP inhibitor). FACS and fluorescence microscopy showed that hypoxic cells preferentially take up exosomes released by hypoxic cells, compared with other exosome formulations. In addition, the distribution of SPIO-labeled exosomes was successively imaged in vivo using MPI. Finally, the therapeutic efficacy of Olaparib-loaded exosomes was demonstrated by increased apoptosis and slower tumor growth in vivo. Our novel theranostic platform could be used as an effective strategy to monitor exosomes in vivo and deliver therapeutics to hypoxic tumors. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available