4.8 Article

Reactive oxygen species scavenging with a biodegradable, thermally responsive hydrogel compatible with soft tissue injection

Journal

BIOMATERIALS
Volume 177, Issue -, Pages 98-112

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2018.05.044

Keywords

Hydrogel; Reactive oxygen species; Antioxidant; Thermal responsiveness; Myocardial infarction; Reperfusion injury

Funding

  1. US National Institutes of Health [R01 HL105911]
  2. Commonwealth of Pennsylvania

Ask authors/readers for more resources

Tissue damage and the impairment of regenerative processes by excessive reactive oxygen species (ROS) contributes to the pathogenesis of various diseases in soft tissues including diabetes, atherosclerosis, Parkinson's disease and myocardial ischemic/reperfusion injury. In this study, a thermally responsive injectable hydrogel poly(NIPAAm-co-VP-co-MAPLA-co-MATEMPO) (pNVMT, NIPAAm: N-iso-propylacrylamide, VP: vinylpyrrolidone, MAPLA: methacrylate-polylactide, MATEMPO: methacrylate-TEMPO, TEMPO: 4-amino-TEMPO or 4-Amino-2,2,6,6-tetramethylpiperidine-1 -oxyl) incorporating recyclable ROS scavenging nitroxide radicals on the polymer backbone was developed to locally control adverse tissue effects from free radical generation. In an in vitro oxidative environment, TEMPO Gel significantly preserved cell viability. In a rat myocardial infarction/reperfusion model, TEMPO Gel diffused through the infarcted myocardium, integrated with the tissue upon gelation, and remained for over one week as visualized by MRI. The TEMPO Gel reduced infarction/reperfusion injury and preserved left ventricle geometry. This thermally responsive hydrogel was demonstrated to have properties desirable for local application to soft tissue beds where oxidative damage by ROS is of concern in pathological mechanisms. (C) 2018 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available