4.7 Article

Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces

Journal

BIOMACROMOLECULES
Volume 19, Issue 2, Pages 680-690

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.7b01828

Keywords

-

Funding

  1. ETH research commission [ETH-30 14-1]
  2. Swiss National Science Foundation (SNSF Ambizione) [PZ00P2-790 148156]

Ask authors/readers for more resources

Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a lying down conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, standing up structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available