4.7 Article

TEMPO-Oxidized Bacterial Cellulose Pellicle with Silver Nanoparticles for Wound Dressing

Journal

BIOMACROMOLECULES
Volume 19, Issue 2, Pages 544-554

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.7b01660

Keywords

-

Funding

  1. Aim for the Top University Plan of National Taiwan University
  2. National Science Council, Taiwan [NSC 102-2628-B-002-004-MY3]
  3. Taoyuan General Hospital, Ministry of Health and Welfare, Taiwan [PTH10530]

Ask authors/readers for more resources

Biocompatible bacterial cellulose pellicle (BC?) is a candidate for biomedical material such as wound dressing. However, due to lack of antibacterial activity, to grant BCP with the property is crucial for its biomedical application. In the present study, BCP was modified by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation using TEMPO/NaClO/NaBr system at pH 10 to form TEMPO-oxidized BCP (TOBCP) with anionic C6 carboxylate groups. The TOBCP was subsequently ion-exchanged in AgNO3 solution and silver nanoparticles (AgNP) with diameter of similar to 16.5 nm were in situ synthesized on TOBC nanofiber surfaces by thermal reduction without using a reducing agent. Field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectra, Fourier transform infrared spectroscopy, and thermogravimetric analysis were carried out to confirm morphology and structure of the pellicles with AgNP. The AgNP continuously released Ag+ with a rate of 12.2%/day at 37 degrees C in 3 days. The TOBCP/AgNP exhibited high biocompatibility according to the result of in vitro cytotoxicity test (cell viability >95% after 48 h of incubation) and showed significant antibacterial activities of 100% and 99.2% against E. coli and S. aureus, respectively. Hence, the highly biocompatible and highly antibacterial TOBCP/AgNP prepared in the present study is a promising candidate for wound dressing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available