4.7 Article

Tumor Specific and Renal Excretable Star-like Triblock Polymer-Doxorubicin Conjugates for Safe and Efficient Anticancer Therapy

Journal

BIOMACROMOLECULES
Volume 19, Issue 7, Pages 2849-2862

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.8b00425

Keywords

-

Funding

  1. National Natural Science Foundation of China [51503013, 51390481, 21774008, 81472412]
  2. Fundamental Research Funds for the Central Universities [ZY1519, XK1701]
  3. Ministry of Finance of PRC
  4. Ministry of Education of PRC

Ask authors/readers for more resources

Efficient tumor accumulation and body clearance are two paralleled requirements for ideal nanomedicines. However, it is hard for both to be met simultaneously. The inefficient clearance often restrains the application of drug delivery systems (DDSs), especially for high-dosage administration. In this study, the star-like and block structures are combined to enhance the tumor specific targeting of the parent structures and obtain additional renal excretion property. The influences of polymer architectures and chemical compositions on the physicochemical and biological properties, particularly the simultaneous achievement of tumor accumulation and renal clearance, have been investigated. Among the tested conjugates, an eight-arm triblock star polymer based on poly(ethylene glycol) (PEG) and poly(N-(2-hydroxyl) methacrylamide) (PHPMA) is found to simultaneously fulfill the requirements of superior tumor accumulation and efficient renal clearance due to the appropriate micelle size and reversible aggregation process. On the basis of this conjugate, 60 mg/kg of Dox equivalent (much higher than the maximum tolerated dose (MTD) of Dox) can be administered to efficiently suppress tumor growth without causing any obvious toxicity. This work provides a new approach to design polymer-drug conjugates for tumor specific application, which can simultaneously address the efficacy and safety concerns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available