4.7 Article

Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks

Journal

BIOINFORMATICS
Volume 34, Issue 23, Pages 4039-4045

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/bty481

Keywords

-

Funding

  1. Australia Research Council [DP180102060]
  2. National Health and Medical Research Council of Australia [1121629]
  3. National Natural Science Foundation of China [U1611261, 61772566]
  4. program for Guangdong Introducing Innovative and Entrepreneurial Teams [2016ZT06D211]

Ask authors/readers for more resources

Motivation: Accurate prediction of a protein contact map depends greatly on capturing as much contextual information as possible from surrounding residues for a target residue pair. Recently, ultra-deep residual convolutional networks were found to be state-of-the-art in the latest Critical Assessment of Structure Prediction techniques (CASP12) for protein contact map prediction by attempting to provide a protein-wide context at each residue pair. Recurrent neural networks have seen great success in recent protein residue classification problems due to their ability to propagate information through long protein sequences, especially Long Short-Term Memory (LSTM) cells. Here, we propose a novel protein contact map prediction method by stacking residual convolutional networks with two-dimensional residual bidirectional recurrent LSTM networks, and using both one-dimensional sequence-based and two-dimensional evolutionary coupling-based information. Results: We show that the proposed method achieves a robust performance over validation and independent test sets with the Area Under the receiver operating characteristic Curve (AUC) > 0.95 in all tests. When compared to several state-of-the-art methods for independent testing of 228 proteins, the method yields an AUC value of 0.958, whereas the next-best method obtains an AUC of 0.909. More importantly, the improvement is over contacts at all sequence-position separations. Specifically, a 8.95%, 5.65% and 2.84% increase in precision were observed for the top L/10 predictions over the next best for short, medium and long-range contacts, respectively. This confirms the usefulness of ResNets to congregate the short-range relations and 2D-BRLSTM to propagate the long-range dependencies throughout the entire protein contact map 'image'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available