4.6 Article

Analysis of quantum network coding for realistic repeater networks

Journal

PHYSICAL REVIEW A
Volume 93, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.93.032302

Keywords

-

Funding

  1. JSPS KAKENHI [25280034]
  2. Grants-in-Aid for Scientific Research [25280034] Funding Source: KAKEN

Ask authors/readers for more resources

Quantum repeater networks have attracted attention for the implementation of long-distance and large-scale sharing of quantum states. Recently, researchers extended classical network coding, which is a technique for throughput enhancement, into quantum information. The utility of quantum network coding (QNC) has been shown under ideal conditions, but it has not been studied previously under conditions of noise and shortage of quantum resources. We analyzed QNC on a butterfly network, which can create end-to-end Bell pairs at twice the rate of the standard quantum network repeater approach. The joint fidelity of creating two Bell pairs has a small penalty for QNC relative to entanglement swapping. It will thus be useful when we care more about throughput than fidelity. We found that the output fidelity drops below 0.5 when the initial Bell pairs have fidelity F < 0.90, even with perfect local gates. Local gate errors have a larger impact on quantum network coding than on entanglement swapping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available