4.5 Article

Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform

Journal

BIOCYBERNETICS AND BIOMEDICAL ENGINEERING
Volume 38, Issue 3, Pages 564-573

Publisher

ELSEVIER
DOI: 10.1016/j.bbe.2018.04.004

Keywords

AF; ECG segment; FAWT; Entropy; Classification

Ask authors/readers for more resources

Atrial fibrillation (AF) is the most common type of sustained arrhythmia. The electrocardiogram (ECG) signals are widely used to diagnose the AF. Automated diagnosis of AF can aid the clinicians to make a more accurate diagnosis. Hence, in this work, we have proposed a decision support system for AF using a novel nonlinear approach based on flexible analytic wavelet transform (FAWT). First, we have extracted 1000 ECG samples from the long duration ECG signals. Then, log energy entropy (LEE), and permutation entropy (PEn) are computed from the sub-band signals obtained using FAWT. The LEE and PEn features are extracted from different frequency bands of FAWT. We have found that LEE features showed better classification results as compared to PEn. The LEE features obtained maximum accuracy, sensitivity, and specificity of 96.84%, 95.8%, and 97.6% respectively with random forest (RF) classifier. Our system can be deployed in hospitals to assist cardiac physicians in their diagnosis. (C) 2018 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available