4.7 Article

Polyethylene Glycol-Engrafted Graphene Oxide as Biocompatible Materials for Peptide Nucleic Acid Delivery into Cells

Journal

BIOCONJUGATE CHEMISTRY
Volume 29, Issue 2, Pages 528-537

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.bioconjchem.8b00025

Keywords

-

Funding

  1. Konkuk University

Ask authors/readers for more resources

Graphene oxide (GO) is known to strongly bind single-stranded nucleic acids with fluorescence quenching near the GO surface. However, GO exhibits weak biocompatibility characteristics, such as low dispersibility in cell culture media and significant cytotoxicity. To improve dispersibility in cell culture media and cell viability of GO, we prepared nanosized GO (nGO) constructs and modified the nGO surface using polyethylene glycol (PEG-nGO). Single-stranded peptide nucleic acid (PNA) was adsorbed onto the PEG-nGO and was readily desorbed by adding complementary RNA or under low pH conditions. PNA adsorbed on the PEG-nGO was efficiently delivered into lung cancer cells via endocytosis without affecting cell viability. Furthermore, anti sense PNA delivered using PEG-nGO effectively downregulated the expression of the target gene in cancer cells. Our results suggest that PEG-nGO is a biocompatible carrier useful for PNA delivery into cells and serves as a promising gene delivery tool.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available