4.6 Article

Differential modulation of white adipose tissue endocannabinoid levels by n-3 fatty acids in obese mice and type 2 diabetic patients

Publisher

ELSEVIER
DOI: 10.1016/j.bbalip.2018.03.011

Keywords

2-AG; DHEA; High-fat diet; Obesity; Omega-3 PUFA

Funding

  1. Czech Science Foundation [14-09347S]
  2. Ministry of Health of the Czech Republic [15-27431A]
  3. National Programme for Sustainability II [LQ1605]

Ask authors/readers for more resources

n-3 polyunsaturated fatty acids (n-3 PUFA) might regulate metabolism by lowering endocannabinoid levels. We examined time-dependent changes in adipose tissue levels of endocannabinoids as well as in parameters of glucose homeostasis induced by n-3 PUFA in dietary-obese mice, and compared these results with the effect of n-3 PUFA intervention in type 2 diabetic (T2DM) subjects. Male C57BL/6J mice were fed for 8, 16 or 24 weeks a high-fat diet alone (cHF) or supplemented with n-3 PUFA (cHF + F). Overweight/obese, T2DM patients on metformin therapy were given for 24 weeks corn oil (Placebo; 5 g/day) or n-3 PUFA concentrate as above (Omega-3; 5 g/day). Endocannabinoids were measured by liquid chromatography-tandem mass-spectrometry. Compared to cHF-fed controls, the cHF + F mice consistently reduced 2-arachidonoylglycerol (up to similar to 2-fold at week 24) and anandamide (similar to 2-fold) in adipose tissue, while the levels of endocannabinoid-related anti-inflammatory molecules N-eicosapentaenoyl ethanolamine (EPEA) and N-docosahexaenoyl ethanolamine (DHEA) increased more than similar to 10-fold and similar to 8-fold, respectively. At week 24, the cHF + F mice improved glucose tolerance and fasting blood glucose, the latter being positively correlated with adipose 2-arachidonoylglycerol levels only in obese cHF-fed controls, like fasting insulin and HOMA-IR. In the patients, n-3 PUFA failed to reduce 2-arachidonoylglycerol and anandamide levels in adipose tissue and serum, but they increased both adipose tissue and serum levels of EPEA and DHEA. In conclusion, the inability of n-3 PUFA to reduce adipose tissue and serum levels of classical endocannabinoids might contribute to a lack of beneficial effects of these lipids on glucose homeostasis in T2DM patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available