4.7 Review

The role of hydrogen sulfide in cyclic nucleotide signaling

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 149, Issue -, Pages 20-28

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2017.11.011

Keywords

Hydrogen sulfide; Cyclic nucleotide; cAMP; cGMP; Phosphodiesterase; Hypertension; Cardioprotection

Funding

  1. [NMRC/CIRG1274/2010]
  2. [NUHSRO/2011/012/STB/B2B-08]

Ask authors/readers for more resources

Hydrogen sulfide (H2S) is recognized as an endogenous gaseous transmitter alongside nitric oxide (NO) and carbon monoxide (CO). By integrating into multiple signaling pathways, H2S elicits biological functions in various mammalian systems. Among these pathways, cyclic nucleotide signaling has gradually gained attention in the past decade. Based on current evidence, it seems that H2S may differentially affect the activity of resting adenylyl cyclases (ACs) and activated ACs, therefore playing a dual role in the regulation of cyclic adenosine monophosphate (cAMP) mediated signaling. However, how H2S achieves the differential regulation on ACs remains unknown at molecular level. In the context of cyclic guanosine monophosphate (cGMP) regulation, H2S augments its downstream signaling at least through three different mechanisms: (1) H2S potentiates the response of soluble guanylyl cyclases (sGCs) to NO; (2) H2S inhibits activity of phosphodiesterases (PDEs); and (3) H2S enhances the production of NO. By regulating cyclic nucleotide signaling, H2S possesses therapeutic potentials particularly for hypertension and cardiac injury which have also been discussed in the current review. Nevertheless, a detailed portrayal of H2S mediated interaction with target proteins is still required for a better understanding of the role of this important gaseous mediator in regulating cyclic nucleotide signaling. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available