4.6 Article

The orphan G protein-coupled receptor 25 (GPR25) is activated by Apelin and Apela in non-mammalian vertebrates

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2018.04.229

Keywords

GPR25; Apelin; Apela; Zebrafish; Spotted gars; Pigeons

Funding

  1. National Natural Science Foundation of China [31572391, 31472089, 31772590, 31771375]
  2. National Pilot Project for fostering top-notch students in Basic Sciences

Ask authors/readers for more resources

G protein-coupled receptor 25 (GPR25) is an orphan G protein-coupled receptor in vertebrates, that has been implicated to be associated with autoimmune diseases and regulate blood pressure in humans. However, the endogenous ligand of GPR25 remains unknown in vertebrates. Here, we reported that in non-mammalian vertebrates (zebrafish, spotted gars, and pigeons), GPR25 could be activated by Apelin and Apela peptides, which are also the two endogenous ligands of vertebrate Apelin receptor (APLNR). Using the pGL3-CRE-luciferase reporter assay and confocal microscopy, we first demonstrated that like APLNR, zebrafish GPR25 expressing in HEK293 cells could be effectively activated by zebrafish Apelin and Apela peptides, leading to the inhibition of forskolin-stimulated CAMP production and receptor internalization. Like zebrafish GPR25, pigeon and spotted gar GPR25 could also be activated by Apelin and Apela, and their activation could inhibit forskolin-induced cAMP accumulation. Interestingly, unlike zebrafish (/spotted gar/pigeon) GPR25, human GPR25 could not be activated by Apelin and Apela under the same experimental conditions. RNA-seq analysis further revealed that GPR25 is expressed in a variety of tissues, including the testes and intestine of zebrafish/spotted gars/humans, implying the potential roles of GPR25 signaling in many physiological processes in vertebrates. Taken together, our data not only provides the first proof that the orphan receptor GPR25 possesses two potential ligands 'Apelin and Apela' and its activation decreases intracellular CAMP levels in non-mammalian vertebrates, but also facilitates to unravel the physiological roles of GPR25 signaling in vertebrates. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available