4.7 Article

GROWING WHITE DWARFS TO THE CHANDRASEKHAR LIMIT: THE PARAMETER SPACE OF THE SINGLE DEGENERATE SN Ia CHANNEL

Journal

ASTROPHYSICAL JOURNAL
Volume 819, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/0004-637X/819/2/168

Keywords

binaries: close; novae, cataclysmic variables; white dwarfs

Funding

  1. United States-Israel Binational Science Foundation [2010220]
  2. Ministry of Science, Technology and Space, Israel

Ask authors/readers for more resources

Can a white dwarf (WD), accreting hydrogen-rich matter from a non-degenerate companion star, ever exceed the Chandrasekhar mass and explode as a SN Ia? We explore the range of accretion rates that allow a WD to secularly grow in mass, and derive limits on the accretion rate and on the initial mass that will allow it to reach 1.4M(circle dot)-the Chandrasekhar mass. We follow the evolution through a long series of hydrogen flashes, during which a thick helium shell accumulates. This determines the effective helium mass accretion rate for long-term, self-consistent evolutionary runs with helium flashes. We find that net mass accumulation always occurs despite helium flashes. Although the amount of mass lost during the first few helium shell flashes is a significant fraction of that accumulated prior to the flash, that fraction decreases with repeated helium shell flashes. Eventually no mass is ejected at all during subsequent flashes. This unexpected result occurs because of continual heating of the WD interior by the helium shell flashes near its surface. The effect of heating is to lower the electron degeneracy throughout the WD, especially in the outer layers. This key result yields helium burning that is quasisteady state, instead of explosive. We thus find a remarkably large parameter space within which long-term, selfconsistent simulations show that a WD can grow in mass and reach the Chandrasekhar limit, despite its helium flashes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available