4.7 Article

PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors

Journal

ATMOSPHERIC ENVIRONMENT
Volume 183, Issue -, Pages 20-32

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2018.04.004

Keywords

PM2.5 concentrations; Support vector regression; Grey correlation analysis; Particle swarm optimization; Gravitational search algorithm

Funding

  1. Fundamental Research Funds for the Central Universities [lzujbky-2015-186, lzujbky-2015-263]
  2. Natural Science Foundation of China [11761051]

Ask authors/readers for more resources

The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available