4.6 Article

Dependence of Type Ia supernova luminosities on their local environment

Journal

ASTRONOMY & ASTROPHYSICS
Volume 615, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201731425

Keywords

supernovae: general; techniques: image processing; techniques: photometric; dark energy; methods: data analysis; galaxies: photometry

Funding

  1. National Aeronautics and Space Administration
  2. National Science Foundation
  3. Alfred P. Sloan Foundation
  4. U.S. Department of Energy Office of Science
  5. Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]
  6. University of Arizona
  7. Brazilian Participation Group
  8. Brookhaven National Laboratory
  9. University of Florida
  10. French Participation Group
  11. German Participation Group
  12. Harvard University
  13. Instituto de Astrofisica de Canarias
  14. Michigan State/Notre Dame/JINA Participation Group
  15. Carnegie Mellon University
  16. Johns Hopkins University
  17. Lawrence Berkeley National Laboratory
  18. Max Planck Institute for Astrophysics
  19. Max Planck Institute for Extraterrestrial Physics
  20. New Mexico State University
  21. New York University
  22. Ohio State University
  23. Pennsylvania State University
  24. University of Portsmouth
  25. Princeton University
  26. Spanish Participation Group
  27. University of Tokyo
  28. University of Utah
  29. Vanderbilt University
  30. University of Virginia
  31. University of Washington
  32. Yale University
  33. [171.A-0486]
  34. [176.A-0589]
  35. STFC [ST/R000514/1, ST/P00038X/1] Funding Source: UKRI

Ask authors/readers for more resources

We present a fully consistent catalog of local and global properties of host galaxies of 882 Type Ia supernovae (SNIa) that were selected based on their light-curve properties, spanning the redshift range 0 : 01 < z < 1 : This catalog corresponds to a preliminary version of the compilation sample and includes Supernova Legacy Survey (SNLS) 5-year data, Sloan Digital Sky Survey (SDSS), and low-redshift surveys. We measured low-and moderate-redshift host galaxy photometry in SDSS stacked and single-epoch images and used spectral energy distribution fitting techniques to derive host properties such as stellar mass and U - V rest-frame colors; the latter are an indicator of the luminosity-weighted age of the stellar population in a galaxy. We combined these results with high-redshift host photometry from the SNLS survey and thus obtained a consistent catalog of host stellar masses and colors across a wide redshift range. We also estimated the local observed fluxes at the supernova location within a proper distance radius of 3 kpc, corresponding to the SNLS imaging resolution, and transposed them into local U V rest-frame colors. This is the first time that local environments surrounding SNIa have been measured at redshifts spanning the entire Hubble diagram. Selecting SNIa based on host photometry quality, we then performed cosmological fits using local color as a third standardization variable, for which we split the sample at the median value. We find a local color step significance of 0 : 091 +/- 0 : 013 mag (7 sigma), which effect is as significant as the maximum mass step effect. This indicates that the remaining luminosity variations in SNIa samples can be reduced with a third standardization variable that takes the environment into account. Correcting for the maximum mass step correction of 0 : 094 +/- 0 : 013 mag, we find a local color effect of 0 : 057 +/- 0 : 012 mag (5 sigma), which shows that additional information is provided by the close environment of SNIa. Departures from the initial choices were investigated and showed that the local color effect is still present, although less pronounced. We discuss the possible implications for cosmology and find that using the local color in place of the stellar mass results in a change in the measured value of the dark energy equation-of-state parameter of 0.6%. Standardization using local U V color in addition to stretch and color reduces the total dispersion in the Hubble diagram from 0.15 to 0.14 mag. This will be of tremendous importance for the forthcoming SNIa surveys, and in particular for the Large Synoptic Survey Telescope (LSST), for which uncertainties on the dark energy equation of state will be comparable to the effects reported here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available