4.6 Article

Identifying multiexcitons in MoS2 monolayers at room temperature

Journal

PHYSICAL REVIEW B
Volume 93, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.93.140409

Keywords

-

Funding

  1. [IBS-R011-D1]
  2. Ministry of Science, ICT & Future Planning, Republic of Korea [IBS-R011-D1-2016-A00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

One of the unique features of atomically thin two-dimensional materials is strong Coulomb interactions due to the reduced dielectric screening effect; this feature enables the study of many-body phenomena such as excitons, trions, and biexcitons. However, identification of biexcitons remains unresolved owing to their broad peak feature at room temperature. Here, we investigate multiexcitons in monolayer MoS2 using both electrical and optical doping and identify the transition energies for each exciton. The binding energy of the assigned biexciton is twice that of the trion, in quantitative agreement with theoretical predictions. The biexciton population is predominant under optical doping but negligible under electrical doping. The biexciton population is quadratically proportional to the exciton population, obeying the mass-action theory. Our results illustrate the stable formation of not only trions but also biexcitons due to strong Coulomb interaction even at room temperature; therefore, these results provide a deeper understanding of the complex excitonic behaviors in two-dimensional semiconductors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available