4.6 Article

Interatomic force constants including the DFT-D dispersion contribution

Journal

PHYSICAL REVIEW B
Volume 93, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.93.144304

Keywords

-

Funding

  1. FRS-FNRS through a FRIA Grant
  2. Communaute francaise de Belgique through the BATTAB project (ARC) [14/19-057]
  3. Fonds de la Recherche Scientifique de Belgique (FRS-FNRS) [2.5020.11]
  4. Walloon Region [1117545]

Ask authors/readers for more resources

Grimme's DFT-D dispersion contribution to interatomic forces constants, required for the computation of the phonon band structures in density-functional perturbation theory, has been derived analytically. The implementation has then been validated with respect to frozen phonons, and applied on materials where weak cohesive forces play a major role, i.e., argon, graphite, benzene, etc. We show that these dispersive contributions have to be considered to properly reproduce the experimental vibrational properties of these materials, although the lattice parameter change, coming from the ground-state relaxation with the proper functional, induces the most important change with respect to a treatment without dispersion corrections. In the current implementation, the contribution of these dispersion corrections to the dynamical matrices (with a number of elements that is proportional to the square of the number of atoms) has only a cubic scaling with the number of atoms. In practice, the overload with respect to density-functional calculations is small, making this methodology promising to study vibrational properties of large dispersive systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available