4.7 Article

SUPERNOVAE FROM DIRECT COLLISIONS OF WHITE DWARFS AND THE ROLE OF HELIUM SHELL IGNITION

Journal

ASTROPHYSICAL JOURNAL
Volume 822, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/0004-637X/822/1/19

Keywords

supernovae: general; white dwarfs

Funding

  1. ISF I-CORE grant [1829/12]
  2. Technion Deloro fellowship

Ask authors/readers for more resources

Models for supernovae (SNe) arising from thermonuclear explosions of white dwarfs (WDs) have been studied extensively over the past few decades, mostly focusing on the single-degenerate (accretion of material by a WD) and double-degenerate (WD-WD merger) scenarios. In recent years it was suggested that direct WD-WD collisions provide an additional channel for such explosions. Here we extend the studies of such explosions and explore the role of helium shells in affecting the thermonuclear explosions. We study the impact of both low-mass (similar to 0.01M(circle dot)) and high-mass (>= 0.1M(circle dot)) helium shells. We find that detonation of the massive helium layers precedes the detonation of the WD carbon-oxygen (CO) bulk during the collision and can change the evolution of the explosion and the outcomes for the cases of high-mass He shells. In particular, the He shell detonation propagates on the WD surface and inefficiently burns material prior to the CO detonation that later follows in the central parts of the WD. Such evolution leads to greater production of intermediate elements, producing larger yields of Ti-44 and Cr-48 relative to the pure CO-CO WD collisions. Collisions of WDs with a low-mass He shell do not give rise to helium detonation, but helium burning does precede the CO bulk detonation. Such collisions eject at high velocity a low mass of burned material enriched with intermediate elements and produce smaller changes in the overall explosion outcomes. The various effects arising from the contribution of low-/high-mass He layers change the kinematics and the morphological structure of collision-induced SNe and may thereby provide unique observational signatures for such SNe and play a role in the chemical enrichment of galaxies and the production of intermediate elements and positrons from their longer-term decay.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available