4.7 Article

Performance degradation of a proton exchange membrane fuel cell with dead-ended cathode and anode

Journal

APPLIED THERMAL ENGINEERING
Volume 132, Issue -, Pages 80-86

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2017.12.078

Keywords

Proton exchange membrane fuel cell; Dead-ended; Purging period; Performance degradation

Funding

  1. Natural Science Foundation of China [51476119, 51706162, 51776144]
  2. Natural Science Foundation of Hubei Province [2016CFA041]

Ask authors/readers for more resources

Proton exchange membrane fuel cells with dead-ended cathodes and anodes can simplify the fuel cell system and reduce costs. An experiment was performed to determine the performance degradation characteristics of Proton exchange membrane fuel cells with dead-ended cathodes and anodes. The effects of operating temperature and pressure differences between the cathode and the anode on the purging period were investigated in detail. The performance and cyclic voltammetry before and after the dead-ended operation were analyzed and compared. After the experiment, the membrane electrode assembly was cut to analyze the catalytic layer cross-section membrane morphology by scanning electron microscopy. The results showed that during operation, the fuel cell performance gradually decreases until the setting value, and then quickly recovers when the cathode outlet solenoid valve is triggered during a purging cycle. The dead-ended operating period decreases with an increase in operating temperature but increases with an increase in the pressure difference between the cathode and the anode. Flooding occurs easily in a Proton exchange membrane fuel cell with a dead-ended cathode and anode, causing performance degradation. Moreover, it may cause a decrease in the electrochemical surface area of the catalyst layer. The scanning electron microscopy images showed that both the upper and middle regions of the catalyst layers remained unchanged, whereas the downstream region corroded and become thinner in the dead-ended mode after 60 h. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available