4.7 Article

Experimental investigation of single loop thermosyphons utilized in motorized spindle shaft cooling

Journal

APPLIED THERMAL ENGINEERING
Volume 134, Issue -, Pages 229-237

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2017.11.141

Keywords

Loop thermosyphon; Shaft cooling; Heat transfer performance; Start-up characteristics

Funding

  1. National Natural Science Foundation of China [51575433]

Ask authors/readers for more resources

In this paper, a shaft cooling structure of a grinding motorized spindle was designed based on loop thermosyphons. The evaporation and condensation sections of the loop thermosyphons were located on the same tube due to the thermal conductivity of the shaft. The experimental studies on both heat transfer performance and start-up characteristics of a single loop thermosyphon were performed under the special condition. Then, the cooling effect on the shaft was simulated depending on the obtained experimental data. Results demonstrated that the optimal liquid filling rate of a loop thermosyphon ranged between 50 and 60% under the special condition. Furthermore, a critical value of heating power between 20 W and 40 W was found. When the heating power exceeded this value, the temperature of the evaporation section increased rapidly without any fluctuation. The violent fluctuation of temperature at the upper evaporation section could be utilized as an indicator for the heat transfer limit. Finally, according to the simulation, the maximum temperature of the motorized spindle was reduced by approximately 28% under the effect of the designed cooling structure. (c) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available