4.7 Article

Probing superlubricity stability of hydrogenated diamond-like carbon film by varying sliding velocity

Journal

APPLIED SURFACE SCIENCE
Volume 439, Issue -, Pages 976-982

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2018.01.048

Keywords

Diamond-like carbon film; Superlubricity; Sliding velocity; Transfer layer

Funding

  1. National Natural Science Foundation of China [51527901, 51775462]
  2. State Key Laboratory of Traction Power [2017TPL_Z02]

Ask authors/readers for more resources

In this study, the superlubricity stability of hydrogenated diamond-like carbon (H-DLC) film in vacuum was investigated by varying the sliding velocity (30-700 mm/s). The relatively stable superlubricity state can be maintained for a long distance at low sliding velocity, whereas the superlubricity state quickly disappears and never recovers at high sliding velocity. Under superlubricity state, the transfer layer of H-DLC film was observed on the Al2O3 ball, which played a key role in obtaining ultra-low friction coefficient. Although the transfer layer can be generated at the beginning of the test, high-velocity sliding tends to accelerate the superlubricity failure and leads to the severe wear of H-DLC film. Analysis indicated that the main reason for superlubricity failure at high sliding velocity is not attributed to friction heat or the break of hydrogen passivation but to the absence of transfer layer on Al2O3 ball. The present study can enrich the understanding of superlubricity mechanism of H-DLC film. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available