4.7 Article

Effects of ordered mesoporous structure and La-doping on the microwave absorbing properties of CoFe2O4

Journal

APPLIED SURFACE SCIENCE
Volume 434, Issue -, Pages 234-242

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2017.10.175

Keywords

Mesoporous; Cobalt ferrite; La3+ substitution; Magnetic properties; Microwave absorption

Funding

  1. National Natural Science Foundation of China [11072104, 51202103]
  2. National Natural Science Foundation of The Inner Mongolia Autonomous Region [2015MS0524]

Ask authors/readers for more resources

Low-density ordered mesoporous CoFe2O4 (O-CFO) and CoLa0.12Fe1.88O4 (O-CLFO) are prepared by nanocasting method using mesoporous silica SBA-15 as a hard-template. The crystal structure, surface chemical state, magnetic properties and electromagnetic parameters are characterized by X-ray diffraction, transmission electron microscopy, N-2 adsorption-desorption measurement, X-ray photoelectron spectroscopy, physical property measurement system and vector network analyzer. The results show that all the samples formed a single phase with cubic spinel structure. Meanwhile O-CFO and O-CLFO possess a highly ordered mesostructure. Comparing with particle CoFe2O4 (P-CFO), O-CFO with high specific surface area exhibits lower magnetic saturation (M-s), higher imaginary part of complex permittivity (epsilon '') and imaginary part of the complex permeability (mu ''). The minimum reflection loss (RL) of O-CFO reaches -27.36 dB with a matching thickness of 3.0 mm. The enhancement of the microwave absorbing performances of O-CFO can be mainly attributed to the good impedance matching, high electromagnetic wave attenuation and multiple reflections of electromagnetic wave originated from the ordered mesoporous structure. The M-s of O-CLFO decreases after La3+ doping, while the specific surface area, coercivity value, epsilon '' and mu '' of O-CLFO increase. The minimum R-L of O-CLFO reaches -46.47 dB with a thickness of 3.0 mm, and the effective absorption frequency bandwidth reaches 4.9 GHz. (C) 2017 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available