4.7 Article

Highly efficient hydrogen evolution based on Ni3S4@MoS2 hybrids supported on N-doped reduced graphene oxide

Journal

APPLIED SURFACE SCIENCE
Volume 428, Issue -, Pages 1046-1055

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2017.09.250

Keywords

Ni3S4/MoS2@N-rGO; Hydrothermal co-synthesis; Catalysts; HER

Funding

  1. National Natural Science Foundation of China [11474151, 11774156]
  2. National Key Project for Basic Research [2012CB932304]
  3. PAPD, People's Republic of China

Ask authors/readers for more resources

Hydrogen evolution reaction (HER) through water splitting at low overpotential is an appealing technology to produce renewable energy, wherein the design of stable electrocatalysts is very critical. To achieve optimal electrochemical performance, a highly efficient and stable noble-metal-free HER catalyst is synthesized by means of a facile hydrothermal co-synthesis. It consists of Ni3S4 nanosheets and MoS2 nanolayers supported on N-doped reduced graphene oxide (Ni3S4/MoS2@N-rGO). The optimized sample provides a large amount of active sites that benefit electron transfer in 3D conductive networks. Thanks to the strong synergistic effect in the catalyst network, we achieved a low overpotential of 94 mV, a small Tafel slope of 56 mV/dec and remarkable durability in an acidic medium. (c) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available