4.7 Article

Real-time human activity recognition from accelerometer data using Convolutional Neural Networks

Journal

APPLIED SOFT COMPUTING
Volume 62, Issue -, Pages 915-922

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2017.09.027

Keywords

Activity recognition; Deep learning; Convolutional Neural Networks; Time series classification; Feature extraction

Ask authors/readers for more resources

With a widespread of various sensors embedded in mobile devices, the analysis of human daily activities becomes more common and straightforward. This task now arises in a range of applications such as healthcare monitoring, fitness tracking or user-adaptive systems, where a general model capable of instantaneous activity recognition of an arbitrary user is needed. In this paper, we present a user-independent deep learning-based approach for online human activity classification. We propose using Convolutional Neural Networks for local feature extraction together with simple statistical features that preserve information about the global form of time series. Furthermore, we investigate the impact of time series length on the recognition accuracy and limit it up to 1 s that makes possible continuous realtime activity classification. The accuracy of the proposed approach is evaluated on two commonly used WISDM and UCI datasets that contain labeled accelerometer data from 36 and 30 users respectively, and in cross-dataset experiment. The results show that the proposed model demonstrates state-of-the-art performance while requiring low computational cost and no manual feature engineering. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available