4.5 Article

Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration

Journal

APPLIED PHYSIOLOGY NUTRITION AND METABOLISM
Volume 43, Issue 5, Pages 437-444

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/apnm-2017-0578

Keywords

aging; autophagy; brain; whey protein concentrate; Wistar rat

Funding

  1. University Grants Commission (UGC), India [F.4-2/2006(BSR)/BL/14-15/0326]
  2. FIST grant from Department of Science and Technology, Govt. of India
  3. UGC-SAP grant from UGC, India

Ask authors/readers for more resources

Whey protein concentrate (WPC) is a rich source of sulfur-containing amino acids and is consumed as a functional food, incorporating a wide range of nutritional attributes. The purpose of this study is to evaluate the neuroprotective effect of WPC on rat brain during aging. Young (4 months) and old (24 months) male Wistar rats were supplemented with WPC (300 mg/kg body weight) for 28 days. Biomarkers of oxidative stress and antioxidant capacity in terms of ferric reducing antioxidant potential (FRAP), lipid hydroperoxide (LHP), total thiol (T-SH), protein carbonyl (PC), reactive oxygen species (ROS), nitric oxide (NO), and acetylcholinesterase (AChE) activity were measured in brain of control and experimental (WPC supplemented) groups. In addition, gene expression and histopathological studies were also performed. The results indicate that WPC augmented the level of FRAP, T-SH, and AChE in old rats as compared with the old control. Furthermore, WPC-treated groups exhibited significant reduction in LHP, PC, ROS, and NO levels in aged rats. WPC supplementation also downregulated the expression of inflammatory markers (tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-6), and upregulated the expression of marker genes associated with autophagy (Atg3, Beclin-1, LC3B) and neurodegeneration (neuron specific enolase, Synapsin-I, MBP-2). The findings suggested WPC to be a potential functional nutritional food supplement that prevents the progression of age-related oxidative damage in Wistar rats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available