4.6 Article

Neural network based design of metagratings

Journal

APPLIED PHYSICS LETTERS
Volume 112, Issue 24, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.5033327

Keywords

-

Funding

  1. U.S. Air Force Office of Scientific Research (AFOSR) [FA9550-14-1-0349]

Ask authors/readers for more resources

Metagratings are flat and thin surfaces that rely on unique, periodically repeating (non-gradient), arbitrary shaped light scattering units for wave manipulation. However, the absence of an empirical relationship between the structural and diffraction properties of the units enforces utilization of brute force numerical optimization techniques to determine the unit shape for a desired application. Here, we present an artificial neural network based methodology to develop a fast-paced numerical relationship between the two. We demonstrate the training and the performance of a numerical function, utilizing simulated diffraction efficiencies of a large set of units, that can instantaneously mimic the optical response of any other arbitrary shaped unit of the same class. We validate the performance of the trained neural network on a previously unseen set of test samples and discuss the statistical significance. We then utilize the virtually instantaneous network operations to inverse design the metagrating unit shapes for a desired diffraction efficiency distribution. The proposed inter-disciplinary combination of advanced information processing techniques with Maxwell's equation solvers opens a pathway for the fast-paced prediction of metagrating designs rather than full wave computation. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available