4.6 Article

The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions

Journal

APPLIED NUMERICAL MATHEMATICS
Volume 131, Issue -, Pages 140-157

Publisher

ELSEVIER
DOI: 10.1016/j.apnum.2018.05.001

Keywords

Nonlinear Volterra integral equation; Radial basis function; Discrete collocation method; Meshless method; Error analysis

Ask authors/readers for more resources

In this investigation, a computational scheme is given to solve nonlinear one- and two-dimensional Volterra integral equations of the second kind. We utilize the radial basis functions (RBFs) constructed on scattered points by combining the discrete collocation method to estimate the solution of Volterra integral equations. All integrals appeared in the scheme are approximately computed by the composite Gauss-Legendre integration formula. The implication of previous methods for solving these types of integral equations encounters difficulties by increasing the dimensional of problems and sometimes requires a mesh generation over the solution region. While the new technique presented in the current paper does not increase the difficulties for higher dimensional integral equations due to the easy adaption of RBF and also needs no cell structures on the domains. Moreover, we obtain the error bound and the convergence rate of the proposed approach. Illustrative examples clearly show the reliability and efficiency of the method and confirm the theoretical error estimates. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available