4.7 Article

Rerouting carbon flux for optimized biosynthesis of mesaconate in Escherichia coli

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 102, Issue 17, Pages 7377-7388

Publisher

SPRINGER
DOI: 10.1007/s00253-018-9135-x

Keywords

E. coli; fumA; GalP; Mesaconase; PEP; PpsA

Funding

  1. National Science Foundation through the University of Minnesota Center for Sustainable Polymers [CHE-1413862]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [1413862] Funding Source: National Science Foundation

Ask authors/readers for more resources

Mesaconate, a branched unsaturated dicarboxylic acid, has drawn great interest because of its versatile applications. In this work, we optimized the fermentation efficiency of Escherichia coli to produce mesaconate from glucose. We first drove the carbon flux to 2-ketoglutarate by overexpressing genes involved in TCA precursor pathway and anaplerotic pathways. Then, to increase the pool of phosphoenolpyruvate (PEP), an upstream precursor for 2-ketoglutarate, the phosphotransferase system (PTS) of E. coli was inactivated by deleting glucose PTS permease and the import of glucose was altered by overexpressing galactose/H+ symporter GalP. Further, production optimization was achieved by deleting a class I fumarase (FumA) to block the hydration of mesaconate. Finally, we overexpressed PEP synthase (PpsA) to increase the availability of phosphoenolpyruvate and accelerate the production of mesaconate. These genetic modifications led to mesaconate production with a titer of 23.1 g L-1 and a yield of 0.46 g g(-1) glucose (64% of the theoretical maximum). This work demonstrates the possibility of engineering a highly efficient bacteria strain that converts glucose into mesaconate with promising titer, rate, and yield.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available