4.6 Article

Chemically reactive and radiative von Karman swirling flow due to a rotating disk

Journal

APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
Volume 39, Issue 9, Pages 1295-1310

Publisher

SHANGHAI UNIV
DOI: 10.1007/s10483-018-2368-9

Keywords

rotating stretchable disk; magnetic field; nonlinear radiative heat flux; homogeneous-heterogeneous chemical reaction

Ask authors/readers for more resources

A new mathematical model is presented to study the heat and mass transfer characteristics of magnetohydrodynamic (MHD) Maxwell fluid flow over a convectively heated stretchable rotating disk. To regulate the fluid temperature at the surface, a simple isothermal model of homogeneous-heterogeneous reactions is employed. The impact of nonlinear thermal radiative heat flux on thermal transport features is studied. The transformed nonlinear system of ordinary differential equations is solved numerically with an efficient method, namely, the Runge-Kutta-Felberg fourth-order and fifth-order (RKF45) integration scheme using the MAPLE software. Achieved results are validated with previous studies in an excellent way. Major outcomes reveal that the magnetic flux reduces the velocity components in the radial, angular, and axial directions, and enhances the fluid temperature. Also, the presence of radiative heat flux is to raise the temperature of fluid. Further, the strength of homogeneous-heterogeneous reactions is useful to diminish the concentration of reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available