4.7 Article

Study of cross-diffusion induced Turing patterns in a ratio-dependent prey-predator model via amplitude equations

Journal

APPLIED MATHEMATICAL MODELLING
Volume 55, Issue -, Pages 383-399

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2017.11.005

Keywords

Cross-diffusion; Turing bifurcation; Spatial pattern; Amplitude equation; Weakly nonlinear analysis

Ask authors/readers for more resources

Cross-diffusion models the situation where the presence, absence or abundance of one species of population affects the movement of other species of population in the domain under consideration and vice versa. Inclusion of cross-diffusion terms makes the modeling approach more realistic and shows significant impact on the spatio-temporal pattern formation scenario. In this paper, cross-diffusion is considered in a prey-predator model with ratio-dependent functional response, in addition to self-diffusion. Weakly nonlinear analysis is used near the Turing bifurcation boundary to derive the amplitude equations. From the stability analysis of the amplitude equations, conditions for emergence of Turing patterns such as cold spot, hot spot, mixture of spots and stripes and labyrinthine are identified. The analytical results are then verified with the help of numerical simulations. Results are general in nature and can be used to study the effect of cross-diffusion on other prey predator models both analytically and numerically. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available