4.5 Article

Entropy based fuzzy least squares twin support vector machine for class imbalance learning

Journal

APPLIED INTELLIGENCE
Volume 48, Issue 11, Pages 4212-4231

Publisher

SPRINGER
DOI: 10.1007/s10489-018-1204-4

Keywords

Information entropy; Class imbalance; Fuzzy membership; Least squares support vector machine (LSSVM); K-nearest neighbour (K-NN)

Ask authors/readers for more resources

In classification problems, the data samples belonging to different classes have different number of samples. Sometimes, the imbalance in the number of samples of each class is very high and the interest is to classify the samples belonging to the minority class. Support vector machine (SVM) is one of the widely used techniques for classification problems which have been applied for solving this problem by using fuzzy based approach. In this paper, motivated by the work of Fan et al. (Knowledge-Based Systems 115: 87-99 2017), we have proposed two efficient variants of entropy based fuzzy SVM (EFSVM). By considering the fuzzy membership value for each sample, we have proposed an entropy based fuzzy least squares support vector machine (EFLSSVM-CIL) and entropy based fuzzy least squares twin support vector machine (EFLSTWSVM-CIL) for class imbalanced datasets where fuzzy membership values are assigned based on entropy values of samples. It solves a system of linear equations as compared to the quadratic programming problem (QPP) as in EFSVM. The least square versions of the entropy based SVM are faster than EFSVM and give higher generalization performance which shows its applicability and efficiency. Experiments are performed on various real world class imbalanced datasets and compared the results of proposed methods with new fuzzy twin support vector machine for pattern classification (NFTWSVM), entropy based fuzzy support vector machine (EFSVM), fuzzy twin support vector machine (FTWSVM) and twin support vector machine (TWSVM) which clearly illustrate the superiority of the proposed EFLSTWSVM-CIL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available