4.8 Article

Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems

Journal

APPLIED ENERGY
Volume 212, Issue -, Pages 919-930

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.12.098

Keywords

Electric ship propulsion; Hybrid energy storage; Multi-objective optimization; Model predictive control; Energy management; Dynamic programming

Ask authors/readers for more resources

Current trends in both commercial and military ship development have focused on ship electrification. A challenge for electric-ship propulsion systems, however, is large propulsion-load fluctuations. To address this issue, this paper explores a new solution, namely a combined battery and flywheel (B/FW) hybrid energy storage system (HESS) as a buffer to isolate load fluctuations from the shipboard network. Our two main objectives, power-fluctuation compensation and energy saving under various operating constraints, are formulated as a multi-objective optimization problem. Pareto fronts, which illustrate the trade-offs between the main objectives, are obtained by using dynamic programming with the weighted sum method. To quantitatively analyze the performance of B/FW HESS, a comparative study is performed under different sea conditions, where a battery/ultra-capacitor (B/UC) HESS configuration is used as a reference in performance evaluation. Simulation results show the feasibility and effectiveness of B/FW to mitigate the load fluctuations for all-electric ships, especially at high sea states. Furthermore, a model predictive control (MPC) algorithm is developed to facilitate real-time implementation of the proposed solution. A performance comparison between the proposed MPC energy management strategy and the global dynamic programming is performed, and this comparison demonstrates the effectiveness of the proposed MPC strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available