4.8 Article

The water consequences of a transitioning US power sector

Journal

APPLIED ENERGY
Volume 210, Issue -, Pages 613-622

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.08.021

Keywords

Energy water nexus; Water for power; Thermoelectric cooling; Electricity generation

Funding

  1. National Science Foundation's Early-concept Grants for Exploratory Research program
  2. NSF [CBET 1632945]

Ask authors/readers for more resources

The US power sector is in a state of transition, prompted by significant shifts in technological innovations, energy markets, regulatory structures, and social pressures. As the electricity generation fleet changes, so too does the spatial & temporal distribution of the cooling water requirements for power plants. However, to date, these impacts have yet to be quantified. This study uses power plant-specific fuel consumption, generation, and cooling water use data to assess changes in the water withdrawn and consumed by thermoelectric power plants across 8-digit Hydrologic Unit Code (HUC-8) watersheds between 2008 and 2014. During this period, a few prominent trends are noted, including transitions in generation from coal-fired steam to natural-gas combined cycle units, from once-through cooling to wet recirculating towers and dry cooling systems, and from traditional fresh and saline surface cooling water to reclaimed water and groundwater sources. Total US cooling water withdrawals and consumption volume decreased from 2008 to 2014. The average water withdrawn per unit of electrical output decreased over this time, while changes in water consumption rates stayed relatively flat. Changes in water use at the watershed scale were unevenly distributed, as some water-scarce regions experienced increases in cooling water usage for thermal power plants, while others experienced significant water reductions and environmental benefits, especially where coal-fired generation was retired or retrofitted. The results from this study underscore the importance of evaluating water withdrawals and consumption at local spatial scales, as the water extraction, water quality and environmental health consequences of power plants on downstream users are non-uniform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available