4.7 Article

Simple J-factors and D-factors for indirect dark matter detection

Journal

PHYSICAL REVIEW D
Volume 93, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.93.103512

Keywords

-

Funding

  1. Science and Technology Facilities Council (STFC) of the United Kingdom
  2. STFC [ST/K000985/1] Funding Source: UKRI

Ask authors/readers for more resources

J-factors (or D-factors) describe the distribution of dark matter in an astrophysical system and determine the strength of the signal provided by annihilating (or decaying) dark matter respectively. We provide simple analytic formulas to calculate the J-factors for spherical cusps obeying the empirical relationship between enclosed mass, velocity dispersion and half-light radius. We extend the calculation to the spherical Navarro-Frenk-White model, and demonstrate that our new formulas give accurate results in comparison to more elaborate Jeans models driven by Markov chain Monte Carlo methods. Of the known ultrafaint dwarf spheroidals, we show that Ursa Major II, Reticulum II, Tucana II and Horologium I have the largest J-factors and so provide the most promising candidates for indirect dark matter detection experiments. Amongst the classical dwarfs, Draco, Sculptor and Ursa Minor have the highest J-factors. We show that the behavior of the J-factor as a function of integration angle can be inferred for general dark halo models with inner slope. and outer slope beta. The central and asymptotic behavior of the J-factor curves are derived as a function of the dark halo properties. Finally, we show that models obeying the empirical relation on enclosed mass and velocity dispersion have J-factors that are most robust at the integration angle equal to the projected half-light radius of the dwarf spheroidal (dSph) divided by heliocentric distance. For most of our results, we give the extension to the D-factor which is appropriate for the decaying dark matter picture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available