4.6 Article

Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages

Journal

ANNALS OF OPERATIONS RESEARCH
Volume 274, Issue 1-2, Pages 241-265

Publisher

SPRINGER
DOI: 10.1007/s10479-018-2900-5

Keywords

Unit commitment problem; Pumped storages; Hydrothermal coordination; Volatile residual demand patterns; Mixed-integer linear programming model; Fix-and-optimize procedure

Ask authors/readers for more resources

In this paper, we consider a long-term unit commitment problem with thermal and renewable energy sources, where system operating costs have to be minimized. The problem is enhanced by adding pumped storages, where water is stored in reservoirs, being turbinated or pumped up if it is beneficial in terms of reducing the operating costs. We present a tight mixed-integer linear programming model with a redefinition of decision variables and a reformulation of constraints, e.g., for the spinning reserve. The model serves as a basis for a new decomposition method, where fix-and-optimize schemes are used. In particular, a time-oriented, a unit-oriented, and a generic fix-and-optimize procedure are presented. A computational performance analysis shows that the mixed-integer linear model is efficient in supporting the solution process for small- and medium-scale instances. Furthermore, the fix-and-optimize procedures are able to tackle even large-scale instances. Particularly, problem instances with real-world energy demands, power plant-specific characteristics, and a one-year planning horizon with hourly time steps are solved to near-optimality in reasonable time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available