4.7 Article

A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655-40?

Journal

ASTROPHYSICAL JOURNAL
Volume 822, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/0004-637X/822/1/20

Keywords

accretion, accretion disks; black hole physics; infrared: stars; stars: black holes; stars: winds, outflows

Funding

  1. NASA [HST-HF2-51343.001-A, PF2-130097]

Ask authors/readers for more resources

During its 2005 outburst, GRO J1655-40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind-apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley & Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on the orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this hypersoft state are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available