4.7 Article

THE INSTABILITY AND NON-EXISTENCE OF MULTI-STRANDED LOOPS WHEN DRIVEN BY TRANSVERSE WAVES

Journal

ASTROPHYSICAL JOURNAL
Volume 823, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/0004-637X/823/2/82

Keywords

magnetohydrodynamics (MHD); Sun: corona; waves

Funding

  1. Odysseus grant
  2. KU Leuven [GOA-2015-014]
  3. Belspo IAP P7/08 CHARM network

Ask authors/readers for more resources

In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands in order to explain their thermal behavior and appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193 angstrom passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin-Helmholtz instability acting as the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available