4.6 Article

Structural, elastic and thermo-electronic properties of paramagnetic perovskite PbTaO3

Journal

RSC ADVANCES
Volume 6, Issue 53, Pages 48009-48015

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra10468a

Keywords

-

Ask authors/readers for more resources

Self-consistent ab initio calculations with highly precise spin-polarised, density functional theory (DFT) have been performed for the first time, to study the structural stability, mechanical and magneto-electronic properties of cubic perovskite PbTaO3. The DFT as well as the analytically calculated values of tolerance factor, in addition to stable-phase optimization, mechanical and elastic properties show stability of the present material in the cubic phase with a reasonably stiff nature and ductile properties. The symmetric spin-polarised band structure of both the spin (up and down) channels reveals zero spin polarisation at the Fermi level. Moreover, the insignificant total and individual spin magnetic moments of adjacent atoms and magnetic susceptibility calculations via the post-DFT treatment predict the paramagnetic nature of the material. Based on results of the present study, the paramagnetic metal PbTaO3 material is considered a promising candidate in designing new electrode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available