4.8 Article

Dual-Modal Split-Type Immunosensor for Sensitive Detection of Microcystin-LR: Enzyme-Induced Photoelectrochemistry and Colorimetry

Journal

ANALYTICAL CHEMISTRY
Volume 90, Issue 15, Pages 9606-9613

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b02546

Keywords

-

Funding

  1. National Scientific Foundation of China [21475047, U130214, 21705051]
  2. Science and Technology Planning Project of Guangdong Province [2016B030303010]
  3. Scientific Foundation of Guangdong Province [2017A030313077]
  4. National Key Research and Development Program of China [SQ2017YFC160089]
  5. Program for the Top Young Innovative Talents of Guangdong Province [2016TQ03N305]
  6. Foundation for High-Level Talents in South China Agricultural University

Ask authors/readers for more resources

Microcystins, the lethal cyanotoxins from Microcystis aeruginosa, can inhibit the activity of protein phosphatase and promote liver tumors. Herein, a dual-modal split-type immunosensor was constructed to detect microcystin-LR (MC-LR), based on the photocurrent change of CdS/ZnO hollow nanorod arrays (HNRs) and the blue shift of the surface plasmon resonance peak from Au nanobipyramids@Ag. By using mesoporous silica nanospheres as the carrier to immobilize secondary antibody and DNA primer, a hybridization chain reaction was adopted to capture alkaline phosphatase, while its catalytic reaction product, ascorbic acid, exhibited dual functions. The detailed mechanism was investigated, showing that ascorbic acid can not only act as the electron donor to capture the holes in CdS/ZnO-HNRs, leading to the increase photocurrent, but also as the reductant to form silver shells on Au nanobipyramids, generating multiply vivid color variations and blue shifts. Compared with the traditional photoelectrochemical immunosensor or colorimetric method for MC-LR, a more accurate and reliable result can be obtained, due to different mechanisms and independent signal transduction. Therefore, this work can not only propose a new dual-modal immunosensor for MC-LR detection but also provide innovative inspiration for constructing sensitive, accurate, and visual analysis for toxins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available