4.8 Article

A pH-Sensing Optode for Mapping Spatiotemporal Gradients in 3D Paper-Based Cell Cultures

Journal

ANALYTICAL CHEMISTRY
Volume 90, Issue 3, Pages 2376-2383

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b05015

Keywords

-

Funding

  1. Eli Lilly and Company's Young Investigator Award
  2. National Center for Advancing Translational Sciences (NCATS) [UL1TR001111]
  3. National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure program [ECCS-1542015]
  4. NATIONAL CENTER FOR ADVANCING TRANSLATIONAL SCIENCES [UL1TR001111, UL1TR002489] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Paper-based cultures are an emerging platform for preparing 3D tissue-like structures. Chemical gradients can be imposed upon these cultures, generating microenvironments similar to those found in poorly vascularized tumors. There is increasing evidence that the tumor microenvironment is responsible for promoting drug resistance and increased invasiveness. Acidosis, or the acidification of the extracellular space, is particularly important in promoting these aggressive cancer phenotypes. To better understand how cells respond to acidosis there is a need for 3D culture platforms that not only model relevant disease states but also contain sensors capable of quantifying small molecules in the extracellular environment. In this work, we describe pH-sensing optodes that are capable of generating high spatial and temporal resolution maps of pH gradients in paper-based cultures. This sensor was fabricated by suspending microparticles containing pH-sensitive (fluorescein) and pH-insensitive (diphenylanthracene) dyes in a polyurethane hydrogel, which was then coated onto a transparent film. The pH-sensing films have a fast response time, are reversible, stable in long-term culture environments, have minimal photobleaching, and are not cytotoxic. These films have a pK(a) of 7.61 +/- 0.04 and are sensitive in the pH range corresponding to normal and tumorigenic tissues. With these optodes, we measured the spatiotemporal evolution of pH gradients in paper-based tumor models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available