4.8 Article

Paper-Based Microfluidic Device with Integrated Sputtered Electrodes for Stripping Voltammetric Determination of DNA via Quantum Dot Labeling

Journal

ANALYTICAL CHEMISTRY
Volume 90, Issue 2, Pages 1092-1097

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b04274

Keywords

-

Funding

  1. Action Strengthening Postdoctoral Researchers act from the resources of EP Human Resources Development Program, Education and Lifelong Learning
  2. European Social Fund (ESF)
  3. Greek Government

Ask authors/readers for more resources

This work reports a microfabricated electrochemical paper-based analytical device (ePAD) for the voltammetric determination of DNA. The device is patterned by wax-printing on paper and features a circular assay zone connected to an inlet zone and a sink via grooved microfluidic channels for accelerated flow rate. An electrochemical cell with integrated electrodes is formed on the reverse side of the paper by sputtering of thin metal films (Sn, Pt and Ag as the working, counter and reference electrode, respectively). Proof-of-principle of the ePAD for biosensing is demonstrated for a DNA assay involving attachment of capture DNA, hybridization with biotinylated target oligonucleotide and labeling with streptavidin-conjugated CdSe/ZnS quantum dots (QDs). After the acidic dissolution of the QDs, the released Cd(II) is quantified by anodic stripping voltammetry (ASV) at the Sn-film working electrode. Thanks to the synergistic effects of QDs amplification, the inherent sensitivity of ASV and the excellent detection capabilities of the Sn-film working electrode for Cd(II), the target DNA can be detected at levels as low as 0.11 pmol L-1 using sample volumes as low as 1 fa,. The developed microfluidic ePAD costs only 0.11$ and presents favorable fabrication and operational features that make it an excellent candidate biosensor for simple and ultrasensitive point-of-need testing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available