4.7 Article

Label-free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy

Journal

ANALYTICA CHIMICA ACTA
Volume 997, Issue -, Pages 44-51

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2017.10.008

Keywords

Raman spectroscopy; Nanocomposites; Prostate cancer; GCPII; MA-SERS

Funding

  1. Ministry of Education, Youth and Sports of the Czech Republic [NPU LO1305, NPU LO1302, NPU LO1304, LM2015073]
  2. Research Infrastructure NanoEnviCz
  3. Grant Agency of the Czech Republic [16-02938S]
  4. [IGA_UP_2017_025]
  5. [CZ.1.07/2.3.00/30.0004]

Ask authors/readers for more resources

Prostate cancer is one of the most common cancers among men and can in its later stages cause serious medical problems. Due to the limited suitability of current diagnostic biochemical markers, new biomarkers for the detection of prostate cancer are highly sought after. An ideal biomarker should serve as a reliable prognostic marker, be applicable for early diagnosis, and be applicable for monitoring of therapeutic response. One potential candidate is glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), which has a promising role for direct imaging. GCPII is considerably over-expressed on cancerous prostatic epithelial cells; its analysis typically follows radiological or spectrophotometric principles. Its role as a biomarker present in blood has been recently investigated and potential correlation between a concentration of GCPII and prostate cancer has been proposed. The wider inclusion of GCPII detection in clinical praxis limits mainly the time and cost per analysis. Here, we present a novel analytical nanosensor applicable to quantification of GCPII in human whole blood consisted of Fe3O4@Ag magnetic nanocomposite surface-functionalized by an artificial antibody (low-molecular-weight GCPII synthetic inhibitor). The nanocomposite allows a simple magnetic isolation of GCPII using external magnetic force and its consecutive determination by magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) with a limit of detection 6 pmol. L-1. This method enables a rapid determination of picomolar concentrations of GCPII in whole human blood of healthy individuals using a standard addition method without a complicated sample pre-treatment. (c) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available