4.8 Article

Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries

Journal

ENERGY STORAGE MATERIALS
Volume 4, Issue -, Pages 130-136

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ensm.2016.04.003

Keywords

Red phosphorus; Three dimensional structure; Carbothermic reaction; Sodium-ion batteries

Ask authors/readers for more resources

Phosphorus is an attractive negative electrode material for sodium ion batteries due to its high theoretical specific capacity of 2596 mA h g(-1). However, it suffers poor conductivity (10-12 S m(-1)), slow reaction dynamics, and large volume expansion (similar to 440%) during the sodiation process, leading to rapid capacity decay upon cycling. Great attention has been devoted to improving the electrical conductivity via mixing phosphorus particles with conductive carbon materials, yet little emphasis has been placed on addressing the volume expansion issue, which may leads to the loss of electrical contact between the active material and the current collector, and the sequent deterioration of the overall electrochemical performance. Here, we demonstrate a carbothermic reduction method to fabricate ultrafine red phosphorus particles (similar to 10 nm) embedded in a three-dimensional carbon framework, in which numerous interconnected nanopores are generated accompanied by the carbonization of polyethylene glycol. During discharge/charge processes, nanosized phosphorus particles accommodate the large stress without cracking, and decrease the diffusion length, as well as connect strongly with carbon framework, resulting in an improved conductivity, a reversible specific capacity of 1027 mA h g(-1) (at 0.2 C) and high capacity retention of 88% over 160 cycles. (C) 2016 Published by Elsevier

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available