3.8 Article

Numerical and heat transfer analysis of shell and tube heat exchanger with circular and elliptical tubes

Publisher

SPRINGER
DOI: 10.1186/s40712-016-0059-x

Keywords

Shell and tube heat exchanger; Elliptical tubes; Heat transfer; Pressure drop

Ask authors/readers for more resources

Background: Heat exchanger is a device in many industrial applications and energy conversion systems. Various heat exchangers are designed for different industrial processes and applications. Shell and tube heat exchanger (STHE) has its own importance in the process industries. Methods: Experimental and numerical simulations are carried for a single shell and multiple pass heat exchangers with different tube geometries i.e. circular tubes to elliptical tubes. The experiment was carried out with hot fluid in tube side and cold fluid in shell side with circular tubes at 600 tube orientation and 25 % baffle cut. Heat transfer rates and pressure drops are calculated for various Reynolds numbers from 4000 to 20000. Fluent software is used for numerical investigations. Both circular and elliptical tube geometries with 450,600 and 900 orientations are used for the numerical studies. In addition to 25 % baffle cut, quarter baffle cut and mirror quarter baffle cut arrangements are used for comparison. The experimental values of heat transfer rates and pressure drops over shell side and tube side along the length of STHE are compared with those obtained from fluent software. Results and Conclusion: It is found that the elliptical tube geometry with mirror quarter baffle cut at 450 tube orientation is 10 % higher than existing shell and tube heat exchanger and the pressure drop decrement in tube side shows up to 25 %.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available